Biomedicine & Pharmacotherapy (Sep 2024)

Inhibition of neutrophil rolling and migration by caADAMTS13 in vitro and in mouse models of thrombosis and inflammation

  • Kieron South,
  • Lucy Roberts,
  • Anna Gray,
  • Nadim Luka,
  • Patrick Strangward,
  • Graham Coutts,
  • Craig J. Smith,
  • Ingo Schiessl,
  • Stuart M. Allan

Journal volume & issue
Vol. 178
p. 117166

Abstract

Read online

Recent investigation of a constitutively active ADAMTS13 variant (caADAMTS13) in murine models of acute ischaemic stroke (AIS) have revealed a potential anti-inflammatory mechanism of action contributing to its protective effect. However, it remains unclear whether these observations are a direct result of VWF proteolysis by caADAMTS13. We have implemented state of the art in vitro assays of neutrophil rolling and transmigration to quantify the impact of caADAMTS13 on these processes. Moreover, we have tested caADAMTS13 in two in vivo assays of neutrophil migration to confirm the impact of the treatment on the neutrophil response to sterile inflammation. Neutrophil rolling, over an interleukin-1β stimulated hCMEC/D3 monolayer, is directly inhibited by caADAMTS13, reducing the proportion of neutrophils rolling to 9.5 ± 3.8 % compared to 18.0 ± 4.5 % in untreated controls. Similarly, neutrophil transmigration recorded in real-time, was significantly suppressed in the presence of caADAMTS13 which reduced the number of migration events to a level like that in unstimulated controls (18.0 ± 4.5 and 15.8 ± 7.5 cells/mm2/h, respectively). Brain tissue from mice undergoing experimental focal cerebral ischaemia has indicated the inhibition of this process by caADAMTS13. This is supported by caADAMTS13’s ability to reduce neutrophil migration into the peritoneal cavity in an ischaemia-independent model of sterile inflammation, with the VWF-dependent mechanism by which this occurs being confirmed using a second experimental stroke model. These findings will be an important consideration in the further development of caADAMTS13 as a potential therapy for AIS and other thromboinflammatory pathologies, including cardiovascular disease.

Keywords