Applied Sciences (Feb 2019)
Research on the Structure and Control Strategy of a Novel Power Electronic Transformer for AC/DC Hybrid Distribution Network
Abstract
Power electronic transformers (PETs), as the core devices of the energy internet, are the key to achieve both effective consumption for renewable energy and the safe and coordinated operation for AC/DC hybrid system. In order to overcome the shortcomings of the existing PETs, a novel PET with an improved structure that applicable for multi-voltage level AC/DC hybrid distribution network is proposed. The topology of the proposed PET is analyzed, and the corresponding control methods are suggested for different parts. The input stage utilizes the modular multilevel converter structure and applies the virtual synchronous machine control strategy to enhance the inertia and damping of the system. The power of the output stage is adjusted flexibly and that enables the PET to provide certain power support to the upper grid and participate in its primary frequency regulation. A combined connection of input-series output-series and input-series output-parallel is applied for the dual-active-bridge modules of the isolation stage to enable network interconnection and electrical isolation of AC/DC grids with significantly different voltage levels. A power coordinated control method is then proposed to meet the power demand of the distribution networks connected to the output stage and ensure stable operations of PET simultaneously. The reliability and efficiency of the proposed PET topology and control strategy for AC/DC hybrid distribution network are finally verified via PSCAD/EMTDC simulation.
Keywords