Frontiers in Immunology (Apr 2021)

TREX1 as a Novel Immunotherapeutic Target

  • Wayne O. Hemphill,
  • Sean R. Simpson,
  • Mingyong Liu,
  • Freddie R. Salsbury,
  • Thomas Hollis,
  • Jason M. Grayson,
  • Fred W. Perrino

DOI
https://doi.org/10.3389/fimmu.2021.660184
Journal volume & issue
Vol. 12

Abstract

Read online

Mutations in the TREX1 3’ → 5’ exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.

Keywords