Advances in Electrical and Computer Engineering (Nov 2020)
Multi-objective Environmental-economic Load Dispatch Considering Generator Constraints and Wind Power Using Improved Multi-objective Particle Swarm Optimization
Abstract
One of the vital optimization issues in energy systems is the problem of economic load dispatch (ED). On the other hand, solar, wind, and other renewable energies are important energy sources for reducing hazardous emissions. This paper suggests an improved multi-objective particle swarm optimization algorithm (IMOPSO) that uses a functional inertial weight and a functional constriction factor to solve the multi-objective environmental-economic load dispatch (MEED) problem. A mutation strategy is used in IMOPSO, and a mutation operator, which is implemented for each particle in the swarm, is used to find optimum Pareto fronts. In this paper, the proposed IMOPSO is applied to the MEED problem under consideration of emission pollution, wind energy, prohibited operating zone, ramp limits, valve point effects, and transmission losses. The proposed technique is tested on the IEEE 30-bus, the IEEE 118-bus test system, and the modified IEEE 118-bus test system with emission coefficients, ramp rate limits, wind power, and prohibited operating zone. The IMOPSOs are compared with the results of various multi-objective algorithms to solve the MEED problem. The simulation results indicate that the IMOPSO produces better results than the compared multi-objective optimization algorithms for various test systems.
Keywords