TCP Doped with Metal Ions Reinforced with Tetragonal and Cubic Zirconia
Vanessa M. Ferro,
Beatriz C. Silva,
Duarte F. Macedo,
Natanael F. Fernandes,
Abílio P. Silva
Affiliations
Vanessa M. Ferro
C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
Beatriz C. Silva
C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
Duarte F. Macedo
C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
Natanael F. Fernandes
CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
Abílio P. Silva
C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
Ceramic biocomposites based on bioactive tricalcium phosphate doped with metal ions are a strategy for obtaining good biomimetics for human bone composition. Manufacturing with PMMA porogen also induces bone-like porosity morphology. The poor strength of tricalcium phosphate can be overcomed by designing ceramic composites reinforced with tetragonal and cubic zirconia. In this work, five different bioceramic composites were manufactured without and with induced porosity and their physical, mechanical, microstructural, and biological properties were studied. With the addition of tetragonal and cubic zirconia, an improvement in strength of 22% and 55%, respectively, was obtained, corresponding to up to 20.7 MPa. PMMA was suitable for adding porosity, up to 30%, with interconnectivity while an excellent hOB cellular viability was achieved for all biocomposites.