BMC Medical Research Methodology (Feb 2021)
A data visualisation method for assessing exposure misclassification in case-crossover studies: the example of tricyclic antidepressants and the risk of hip fracture in older people
Abstract
Abstract Background The case-crossover design is suited to medication safety studies but is vulnerable to exposure misclassification. Using the example of tricyclic antidepressants and the risk of hip fracture, we present a data visualisation tool for observing exposure misclassification in case-crossover studies. Methods A case-crossover study was conducted using Australian Government Department of Veterans’ Affairs claims data. Beneficiaries aged over 65 years who were hospitalised for hip fracture between 2009 and 2012 were included. The case window was defined as 1–50 days pre fracture. Control window one and control window two were defined as 101–150 and 151–200 days pre fracture, respectively. Patients were stratified by whether exposure status changed when control window two was specified instead of control window one. To visualise potential misclassification, each subject’s tricyclic antidepressant dispensings were plotted over the 200 days pre fracture. Results The study population comprised 8828 patients with a median age of 88 years. Of these subjects, 348 contributed data to the analyses with either control window. The data visualisation suggested that 14% of subjects were potentially misclassified with control window one while 45% were misclassified with control window two. The odds ratio for the association between tricyclic antidepressants and hip fracture was 1.18 (95% confidence interval = 0.91–1.52) using control window one, whereas risk was significantly increased (odds ratio = 1.43, 95% confidence interval = 1.11–1.83) using control window two. Conclusions Exposure misclassification was less likely to be present with control window one than with an earlier control window, control window two. When specifying different control windows in a case-crossover study, data visualisation can help to assess the extent to which exposure misclassification may contribute to variable results.
Keywords