Emerging Microbes and Infections (Jan 2020)

Swine acute diarrhea syndrome coronavirus-induced apoptosis is caspase- and cyclophilin D- dependent

  • Jiyu Zhang,
  • Yuru Han,
  • Hongyan Shi,
  • Jianfei Chen,
  • Xin Zhang,
  • Xiaobo Wang,
  • Ling Zhou,
  • Jianbo Liu,
  • Jialin Zhang,
  • Zhaoyang Ji,
  • Zhaoyang Jing,
  • Jingyun Ma,
  • Da Shi,
  • Li Feng

DOI
https://doi.org/10.1080/22221751.2020.1722758
Journal volume & issue
Vol. 9, no. 1
pp. 439 – 456

Abstract

Read online

ABSTRACTSwine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the aetiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. To understand the effect of SADS-CoV on host cells, we characterized the apoptotic pathways and elucidated mechanisms underlying the process of apoptotic cell death after SADS-CoV infection. SADS-CoV-infected cells showed evidence of apoptosis in vitro and in vivo. The use of a pan-caspase inhibitor resulted in the inhibition of SADS-CoV-induced apoptosis and reduction in SADS-CoV replication, suggestive of the association of a caspase-dependent pathway. Furthermore, SADS-CoV infection activated the initiators caspase-8 and -9 and upregulated FasL and Bid cleavage, demonstrating a crosstalk between the extrinsic and intrinsic pathways. However, the proapoptotic proteins Bax and Cytochrome c (Cyt c) relocalized to the mitochondria and cytoplasm, respectively, after infection by SADS-CoV. Moreover, Vero E6 and IPI-2I cells treated with cyclosporin A (CsA), an inhibitor of mitochondrial permeability transition pore (MPTP) opening, were completely protected from SADS-CoV-induced apoptosis and viral replication, suggesting the involvement of cyclophilin D (CypD) in these processes. Altogether, our results indicate that caspase-dependent FasL (extrinsic)- and mitochondria (intrinsic)- mediated apoptotic pathways play a central role in SADS-CoV-induced apoptosis that facilitates viral replication. In summary, these findings demonstrate mechanisms by which SADS-CoV induces apoptosis and improve our understanding of SADS-CoV pathogenesis.

Keywords