Sensors (Mar 2025)
Energy-, Cost-, and Resource-Efficient IoT Hazard Detection System with Adaptive Monitoring
Abstract
Hazard detection in industrial and public environments is critical for ensuring safety and regulatory compliance. This paper presents an energy-efficient, cost-effective IoT-based hazard detection system utilizing an ESP32-CAM microcontroller integrated with temperature (DHT22) and motion (PIR) sensors. A custom-built convolutional neural network (CNN) deployed on a Flask server enabled real-time classification of hazard signs, including “high voltage”, “radioactive”, “corrosive”, “flammable”, “no hazard”, “no smoking”, and “wear gloves”. The CNN model, optimized for embedded applications, achieves high classification accuracy with an F1 score of 85.9%, ensuring reliable detection in diverse environmental conditions. A key feature of the system is its adaptive monitoring mechanism, which dynamically adjusts image capture frequency based on detected activity, leading to 31–37% energy savings compared to continuous monitoring approaches. This mechanism ensures efficient power usage by minimizing redundant image captures while maintaining real-time responsiveness in high-activity scenarios. Unlike traditional surveillance systems, which rely on high-cost infrastructure, centralized monitoring, and subscription-based alerting mechanisms, the proposed system operates at a total cost of SGD 38.60 (~USD 28.50) per unit and leverages free Telegram notifications for real-time alerts. The system was validated through experimental testing, demonstrating high classification accuracy, energy efficiency, and cost-effectiveness. In this study, a hazard refers to any environmental condition or object that poses a potential safety risk, including electrical hazards, chemical spills, fire outbreaks, and industrial dangers. The proposed system provides a scalable and adaptable solution for hazard detection in resource-constrained environments, such as construction sites, industrial facilities, and remote locations. The proposed approach effectively balances accuracy, real-time responsiveness, and low-power operation, making it suitable for large-scale deployment.
Keywords