GCB Bioenergy (Jun 2022)

Quantifying past, current, and future forest carbon stocks within agroforestry systems in central Alberta, Canada

  • Zhengfeng An,
  • Edward W. Bork,
  • Xinyi Duan,
  • Cole D. Gross,
  • Cameron N. Carlyle,
  • Scott X. Chang

DOI
https://doi.org/10.1111/gcbb.12934
Journal volume & issue
Vol. 14, no. 6
pp. 669 – 680

Abstract

Read online

Abstract Information about regional‐level carbon (C) stocks in agroforestry systems (AFS), as well as the annual loss of agroforests and associated C stocks, is scarce, limiting our capacity for increasing C sequestration through establishing, retaining, and enhancing these systems. This study quantified regional‐level C stocks and the associated incremental economic value in the forest land‐use component of three common AFS (hedgerows, shelterbelts, and silvopastures), estimated the annual loss of hedgerow and silvopasture forests and the associated C, and assessed the potential to enhance C storage through the expansion of shelterbelts in central Alberta, Canada, using publicly available satellite imagery, previously collected field data and the Google Earth Engine platform. Results showed that forests in the three AFS stored 699.9 million tons (Mt) C across 9.5 million hectares (Mha) of land in central Alberta and were valued at $102.7 billion based on the 2021 Canadian C tax rate of $40 t−1 CO2‐equivalent. Silvopasture forests in the studied region had the highest C stocks, which were 14.2 and 67.2 times that found in hedgerow and shelterbelt forests, respectively. Between 2001 and 2020, forests in hedgerows and silvopastures declined at rates of 468.1 and 1957.1 ha year−1, respectively, leading to an 8.4 Mt decline in total C storage over the 20 years. However, there is potential to establish new shelterbelts at many road/field margins, which could increase C stocks by 2.3 times the current C stocks in shelterbelt forests. These results highlight the importance of retaining existing and establishing new AFS for increasing C sequestration, emphasizing the impact of agroforest loss on reducing C storage within agroecosystems. The development of policies that assist or reward landowners for providing the ecosystem service of C storage by retaining, establishing, and enhancing agroforests as part of existing agroecosystem management should be encouraged for mitigating climate change.

Keywords