BMC Genomics (Jul 2019)

geneHummus: an R package to define gene families and their expression in legumes and beyond

  • Jose V. Die,
  • Moamen M. Elmassry,
  • Kimberly H. LeBlanc,
  • Olaitan I. Awe,
  • Allissa Dillman,
  • Ben Busby

DOI
https://doi.org/10.1186/s12864-019-5952-2
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background During the last decade, plant biotechnological laboratories have sparked a monumental revolution with the rapid development of next sequencing technologies at affordable prices. Soon, these sequencing technologies and assembling of whole genomes will extend beyond the plant computational biologists and become commonplace within the plant biology disciplines. The current availability of large-scale genomic resources for non-traditional plant model systems (the so-called ‘orphan crops’) is enabling the construction of high-density integrated physical and genetic linkage maps with potential applications in plant breeding. The newly available fully sequenced plant genomes represent an incredible opportunity for comparative analyses that may reveal new aspects of genome biology and evolution. The analysis of the expansion and evolution of gene families across species is a common approach to infer biological functions. To date, the extent and role of gene families in plants has only been partially addressed and many gene families remain to be investigated. Manual identification of gene families is highly time-consuming and laborious, requiring an iterative process of manual and computational analysis to identify members of a given family, typically combining numerous BLAST searches and manually cleaning data. Due to the increasing abundance of genome sequences and the agronomical interest in plant gene families, the field needs a clear, automated annotation tool. Results Here, we present the geneHummus package, an R-based pipeline for the identification and characterization of plant gene families. The impact of this pipeline comes from a reduction in hands-on annotation time combined with high specificity and sensitivity in extracting only proteins from the RefSeq database and providing the conserved domain architectures based on SPARCLE. As a case study we focused on the auxin receptor factors gene (ARF) family in Cicer arietinum (chickpea) and other legumes. Conclusion We anticipate that our pipeline should be suitable for any taxonomic plant family, and likely other gene families, vastly improving the speed and ease of genomic data processing.

Keywords