Discrete Mathematics & Theoretical Computer Science (Jan 2008)

On the number of zero increments of random walks with a barrier

  • Alex Iksanov,
  • Pavlo Negadajlov

DOI
https://doi.org/10.46298/dmtcs.3568
Journal volume & issue
Vol. DMTCS Proceedings vol. AI,..., no. Proceedings

Abstract

Read online

Continuing the line of research initiated in Iksanov and Möhle (2008) and Negadajlov (2008) we investigate the asymptotic (as $n \to \infty$) behaviour of $V_n$ the number of zero increments before the absorption in a random walk with the barrier $n$. In particular, when the step of the unrestricted random walk has a finite mean, we prove that the number of zero increments converges in distribution. We also establish a weak law of large numbers for $V_n$ under a regular variation assumption.

Keywords