BMC Microbiology (Oct 2024)
The utilization of N-acetylgalactosamine and its effect on the metabolism of amino acids in Erysipelotrichaceae strain
Abstract
Abstract Background The metabolism of gut microbiota produces bioactive metabolites that modulate host physiology and promote self-growth. Erysipelotrichaceae is one of the most common anaerobic microorganism families in the gut, which has been discovered to play a vital role in host metabolic disorders and inflammatory diseases. Our previous study found that N-acetylgalactosamine (GalNAc) in caecal content of pigs significantly affected the abundance of Erysipelotrichaceae strains. However, it remains unknown how GalNAc feeding in vitro culture affects the expression levels of genes in the GalNAc metabolic pathway and the concentrations of intermediate metabolites in the Erysipelotrichaceae strain. Whether GalNAc feeding should influence the metabolism of other nutrients, such as amino acids, remains unrevealed. Results In this study, whole-genome sequence, transcriptome, and metabolome data were analyzed to assess the utilization of a Erysipelotrichaceae strain on GalNAc. The results showed the presence of a complete GalNAc catabolism pathway in the genome of this Erysipelotrichaceae strain. GalNAc feeding to this Erysipelotrichaceae strain significantly changed the expression levels of genes involved in glycolysis and tricarboxylic acid (TCA) cycle. Meanwhile, the concentrations of lactate, pyruvate, citrate, succinate and malate from the glycolysis and TCA cycle were significantly increased. In addition, transcriptome analysis indicated that the genes involved in the metabolism of amino acids were affected by GalNAc, including lysA (a gene involved in lysine biosynthesis) that was significantly down-regulated. The intracellular concentrations of 14 amino acids in the Erysipelotrichaceae strain were significantly increased after feeding GalNAc. Conclusions Our findings comfirmed and extended our previous works that demonstrated the utilization of GalNAc by Erysipelotrichaceae strain, and explained the possible mechanism of GalNAc affecting the abundance of Erysipelotrichaceae strain in vitro.
Keywords