Energies (Oct 2022)

Falling-Film Absorption Model Considering Surface Wave and Vibration Effects Based on Lattice Boltzmann Method

  • Huayu Zhang,
  • Hongtao Gao,
  • Xiangcheng Gao,
  • Yuying Yan

DOI
https://doi.org/10.3390/en15217925
Journal volume & issue
Vol. 15, no. 21
p. 7925

Abstract

Read online

As one of the effective solutions to recover waste heat, absorption refrigeration systems are used in various industrial or refrigeration places. Flat-plate falling-film absorption is one of the newer types, and the lattice Boltzmann method (LBM) has certain advantages compared with the traditional numerical simulation method. In this work, an LBM is used to analyze flat-plate falling-film absorption. Using the additional calculation of the pressure by the pseudo-force model, a lithium bromide–water working fluid–heat and mass transfer model driven by steam partial pressure is realized. The results show that the turbulence generated in the surface wave has a favorable effect on the absorption process; the degree of turbulence gradually decreases with the increase in the Reynolds number, which weakens the increasing effect of the surface wave on the absorption. When the Reynolds number is moderate, the solitary wave flows forward relative to the front thin liquid film, which promotes concentration and temperature diffusion inside the liquid film and inside the solitary wave. The model of falling-film flow under vibration environment is realized by using the characteristic of imposing inertial force in the model by pseudo-force method. The results show that vibration has a favorable effect on liquid film absorption, increasing the amplitude can increase the gas–liquid contact area and obtain a lower average film thickness, while increasing the vibration frequency can promote the internal diffusion of the solution.

Keywords