International Transactions on Electrical Energy Systems (Jan 2022)
Multiple Adversarial Domains Adaptation Approach for Mitigating Adversarial Attacks Effects
Abstract
Although neural networks are near achieving performance similar to humans in many tasks, they are susceptible to adversarial attacks in the form of a small, intentionally designed perturbation, which could lead to misclassifications. The best defense against these attacks, so far, is adversarial training (AT), which improves a model’s robustness by augmenting the training data with adversarial examples. However, AT usually decreases the model’s accuracy on clean samples and could overfit to a specific attack, inhibiting its ability to generalize to new attacks. In this paper, we investigate the usage of domain adaptation to enhance AT’s performance. We propose a novel multiple adversarial domain adaptation (MADA) method, which looks at this problem as a domain adaptation task to discover robust features. Specifically, we use adversarial learning to learn features that are domain-invariant between multiple adversarial domains and the clean domain. We evaluated MADA on MNIST and CIFAR-10 datasets with multiple adversarial attacks during training and testing. The results of our experiments show that MADA is superior to AT on adversarial samples by about 4% on average and on clean samples by about 1% on average.