Water (May 2023)

Evolution of Drought Trends under Climate Change Scenarios in Karst Basin

  • Chongxun Mo,
  • Peiyu Tang,
  • Keke Huang,
  • Xingbi Lei,
  • Shufeng Lai,
  • Juan Deng,
  • Mengxiang Bao,
  • Guikai Sun,
  • Zhenxiang Xing

DOI
https://doi.org/10.3390/w15101934
Journal volume & issue
Vol. 15, no. 10
p. 1934

Abstract

Read online

Karst basins have a relatively low capacity for water retention, rendering them very vulnerable to drought hazards. However, karst geo-climatic features are highly spatially heterogeneous, making reliable drought assessment challenging. To account for geo-climatic heterogeneous features and to enhance the reliability of drought assessment, a framework methodology is proposed. Firstly, based on the history of climate (1963–2019) from the Global Climate Model (GCM) and station observations within the Chengbi River karst basin, a multi-station calibration-based automated statistical downscaling (ASD) model is developed, and the Kling–Gupta efficiency (KGE) and Nash–Sutcliffe efficiency (NSE) are selected as performance metrics. After that, future climate (2023–2100) under three GCM scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) are obtained by using the ASD model. Finally, the Standardized Precipitation Evapotranspiration Index (SPEI), calculated by future climate is applied to assess drought conditions. The results indicate that the multi-station calibration-based ASD model has good performance and thus can be used for climate data downscaling in karst areas. Precipitation mainly shows a significant upward trend under all scenarios with the maximum variation (128.22%), while the temperature shows a slow upward trend with the maximum variation (3.44%). The drought condition in the 2040s is still relatively severe. In the 2060s and 2080s, the basin is wetter compared with the historical period. The percentage of drought duration decreases in most areas from the 2040s to the 2080s, demonstrating that the future drought condition is alleviated. From the SSP1-2.6 scenario to the SSP5-8.5 scenario, the trend of drought may also increase.

Keywords