PLoS ONE (Jan 2022)
Can ten days of heat acclimation training improve temperate-condition rowing performance in national-level rowers?
Abstract
This study investigated whether heat acclimation (HA) could improve rowing performance in temperate conditions in national-level rowers. Using a parallel-group design, eleven rowers (3 female, 8 male, age: 21±3 years, height: 182.3±6.8cm, mass: 79.2±9.0kg, [Formula: see text]: 61.4±5.1ml·kg·min-1) completed either a HA intervention (HEAT, n = 5) or acted as controls (CON, n = 6). The intervention replaced usual cross-training sessions and consisted of an hour of submaximal cycling or rowing ergometry in either 34±0°C for HEAT or 14±1°C for CON daily over two five-day blocks (10 sessions total), separated by 72h. Participants performed the '10+4' test that consists of 10-min submaximal rowing and a 4-min time-trial (TT) in temperate conditions (20±0°C) before and after the intervention. Heat acclimation following the 10-session intervention was evidenced by large significant (p0.05) decreases were seen in average tympanic temperature (d = -3.08) and average heart rate (d = -1.53) in HEAT from session 2 to session 10 of the intervention. Furthermore, a large significant increase was seen in plasma volume (d = 3.74), with large significant decreases in haemoglobin concentration (d = -1.78) and hematocrit (d = -12.9). Following the intervention, large non-significant increases in respiratory exchange ratio (d = 0.87) and blood lactate (d = 1.40) as well as a large non-significant decrease in RPE (d = -1.23) were seen in HEAT during the 10-min submaximal rowing. A large significant decrease in peak heart rate (d = -2.27), as well as a large non-significant decrease in relative [Formula: see text] (d = -0.90) and large non-significant increases in respiratory exchange ratio (d = 1.18), blood lactate concentration (d = 1.25) and power output (d = 0.96) were seen in HEAT during the 4-min TT. This study suggests that a 10-session HA intervention may elicit HA in national-level rowers, with potential to improve 4-min TT performance in temperate conditions.