Crystals (Jun 2022)

Computational Simulation by Phase Field: Martensite Transformation Kinetics and Variant Selection under External Fields

  • Chenchong Wang,
  • Jiahua Yuan,
  • Minghao Huang

DOI
https://doi.org/10.3390/cryst12060829
Journal volume & issue
Vol. 12, no. 6
p. 829

Abstract

Read online

Tailoring martensite transformation is critical for improving the mechanical properties of advanced steels. To provide preliminary guidance for the control of martensite transformation behaviour using external fields by computational simulation method, the phase-field method was used to calculate the morphology evolution, kinetics, and variant selection of the martensite transformation under different loading modes and magnetic field intensities. The incubation, transformation, and stable stages of the three variants based on the Bain strain group were investigated using different kinetic curves. These results clearly indicate that both uniaxial tension and compression can greatly promote the formation of martensite during the transformation stage and cause an obvious preferred variant selection. In contrast, the different variants have relatively balanced forms under shearing conditions. In addition, the magnetic field is a gentler way to form a state with balanced variants than other techniques such as shearing. Additionally, all these simulation results are consistent with classical martensitic transformation theory and thermodynamic mechanism, which proves the rationality of this research. The aim of the present study was to provide qualitative guidance for the selection of external fields for microstructural improvement in advanced steels.

Keywords