Results in Materials (Jun 2024)
UV–visible spectroscopic exploratory insight into the long term photo-stability of the fast green FCF dye-fructose-sodium lauryl sulphate-NaOH electrolyte based photogalvanic cell
Abstract
Photo-galvanic cells are organo-inorganic chemical based devices. These cells use chemicals like photo-sensitizer(s), reductant(s), surfactant(s), alkali, solvent, and electrodes. Photo-decay and sacrifice of the chemical materials is imminent leading to the limited electrical output, efficiency and life of these cells. For realizing practical applications, the scalability of electrical output and stability of these devices is of utmost importance. Therefore, the long term photo-stability of Fast Green FCF dye-Fructose-Sodium lauryl sulphate (SLS)-NaOH electrolyte based cells has been studied in present work. The electrical output of the cell has been monitored over long period of time. Further, the photo-stability of electrolyte has been determined and analyzed spectroscopically. It has been observed that the Fast Green FCF dye-Fructose-SLS-NaOH photogalvanic cell device is capable of producing power even after decay of electrolyte. In early 24 h, about 90.54 % of dye degradation is observed. The cell is capable of giving current with even left out concentration ∼0.2 × 10−4 M (i.e., 9.46 % of initial concentration) of sensitizer. Further, the photo-degradation products (organic sulfonates) of FCF dye and SLS are also potential candidates for current generation. Cell charged in sunlight is capable of generating current even after cutting-off the illumination of electrolyte.