Heliyon (Feb 2024)
Predicting Covid-19 pandemic waves with biologically and behaviorally informed universal differential equations
Abstract
During the COVID-19 pandemic, it became clear that pandemic waves and population responses were locked in a mutual feedback loop in a classic example of a coupled behavior-disease system. We demonstrate for the first time that universal differential equation (UDE) models are able to extract this interplay from data. We develop a UDE model for COVID-19 and test its ability to make predictions of second pandemic waves. We find that UDEs are capable of learning coupled behavior-disease dynamics and predicting second waves in a variety of populations, provided they are supplied with learning biases describing simple assumptions about disease transmission and population response. Though not yet suitable for deployment as a policy-guiding tool, our results demonstrate potential benefits, drawbacks, and useful techniques when applying universal differential equations to coupled systems.