PLoS ONE (Jan 2012)

Blocking autophagy prevents bortezomib-induced NF-κB activation by reducing I-κBα degradation in lymphoma cells.

  • Li Jia,
  • Ganga Gopinathan,
  • Johanna T Sukumar,
  • John G Gribben

DOI
https://doi.org/10.1371/journal.pone.0032584
Journal volume & issue
Vol. 7, no. 2
p. e32584

Abstract

Read online

Here we show that bortezomib induces effective proteasome inhibition and accumulation of poly-ubiquitinated proteins in diffuse large B-cell lymphoma (DLBCL) cells. This leads to induction of endoplasmic reticulum (ER) stress as demonstrated by accumulation of the protein CHOP, as well as autophagy, as demonstrated by accumulation of LC3-II proteins. Our data suggest that recruitment of both ubiquitinated proteins and LC3-II by p62 directs ubiquitinated proteins, including I-κBα, to the autophagosome. Degradation of I-κBα results in increased NF-κB nuclear translocation and transcription activity. Since bortezomib treatment promoted I-κBα phosphorylation, ubiquitination and degradation, this suggests that the route of I-κBα degradation was not via the ubiquitin-proteasome degradation system. The autophagy inhibitor chloroquine (CQ) significantly inhibited bortezomib-induced I-κBα degradation, increased complex formation with NF-κB and reduced NF-κB nuclear translocation and DNA binding activity. Importantly, the combination of proteasome and autophagy inhibitors showed synergy in killing DLBCL cells. In summary, bortezomib-induced autophagy confers relative DLBCL cell drug resistance by eliminating I-κBα. Inhibition of both autophagy and the proteasome has great potential to kill apoptosis-resistant lymphoma cells.