Environmental Research Letters (Jan 2022)

A review of the effects of wildfire smoke on the health and behavior of wildlife

  • O V Sanderfoot,
  • S B Bassing,
  • J L Brusa,
  • R L Emmet,
  • S J Gillman,
  • K Swift,
  • B Gardner

DOI
https://doi.org/10.1088/1748-9326/ac30f6
Journal volume & issue
Vol. 16, no. 12
p. 123003

Abstract

Read online

Climate change is intensifying global wildfire activity, and people and wildlife are increasingly exposed to hazardous air pollution during large-scale smoke events. Although wildfire smoke is considered a growing risk to public health, few studies have investigated the impacts of wildfire smoke on wildlife, particularly among species that are vulnerable to smoke inhalation. In this review, we synthesized research to date on how wildfire smoke affects the health and behavior of wildlife. After executing a systematic search using Web of Science, we found only 41 relevant studies. We synthesized findings from this literature and incorporated knowledge gained from fields outside wildlife science, specifically veterinary medicine and air pollution toxicology. Although studies that directly investigated effects of smoke on wildlife were few in number, they show that wildfire smoke contributes to adverse acute and chronic health outcomes in wildlife and influences animal behavior. Our review demonstrates that smoke inhalation can lead to carbon monoxide poisoning, respiratory distress, neurological impairment, respiratory and cardiovascular disease, oxidative stress, and immunosuppression in wildlife, including terrestrial and aquatic species, and these health effects can contribute to changes in movement and vocalization. Some species also use smoke as a cue to engage in fire-avoidance behaviors or to conserve energy. However, our review also highlights significant gaps in our understanding of the impacts of wildfire smoke on wildlife. Most notably, the lack of robust air pollution measurements in existing studies limits meta-analyses and hinders construction of dose-response relationships, thereby precluding predictions of health outcomes and behaviors under different air quality conditions, especially during extreme smoke events. We recommend that future studies leverage existing data sets, infrastructure, and tools to rapidly advance research on this important conservation topic and highlight the potential value of interdisciplinary collaborations between ecologists and atmospheric chemists.

Keywords