The application of acoustic ring resonator structures for the manipulation of audio frequency acoustic waves is demonstrated experimentally and via numerical simulation. Three ring resonator systems are demonstrated: a simple single ring structure that acts as a comb/notch filter, a single ring between two parallel waveguides that acts as an add-drop filter, and a sequential array of equally spaced rings that creates acoustic bandgaps. The experiments are conducted in linear waveguides using an impulse response method. The ring resonators were created via 3D printing. Finite element numerical simulations were conducted using COMSOL.