Nuclear Engineering and Technology (Jun 2014)

FUNCTIONAL VERIFICATION OF A SAFETY CLASS CONTROLLER FOR NPPS USING A UVM REGISTER MODEL

  • KYUCHULL KIM

DOI
https://doi.org/10.5516/NET.04.2013.080
Journal volume & issue
Vol. 46, no. 3
pp. 381 – 386

Abstract

Read online

A highly reliable safety class controller for NPPs (Nuclear Power Plants) is mandatory as even a minor malfunction can lead to disastrous consequences for people, the environment or the facility. In order to enhance the reliability of a safety class digital controller for NPPs, we employed a diversity approach, in which a PLC-type controller and a PLD-type controller are to be operated in parallel. We built and used structured testbenches based on the classes supported by UVM for functional verification of the PLD-type controller designed for NPPs. We incorporated a UVM register model into the testbenches in order to increase the controllability and the observability of the DUT(Device Under Test). With the increased testability, we could easily verify the datapaths between I/O ports and the register sets of the DUT, otherwise we had to perform black box tests for the datapaths, which is very cumbersome and time consuming. We were also able to perform constrained random verification very easily and systematically. From the study, we confirmed the various advantages of using the UVM register model in verification such as scalability, reusability and interoperability, and set some design guidelines for verification of the NPP controllers.

Keywords