BMC Medical Imaging (Sep 2024)

Clinical performance of deep learning-enhanced ultrafast whole-body scintigraphy in patients with suspected malignancy

  • Na Qi,
  • Boyang Pan,
  • Qingyuan Meng,
  • Yihong Yang,
  • Jie Ding,
  • Zengbei Yuan,
  • Nan-Jie Gong,
  • Jun Zhao

DOI
https://doi.org/10.1186/s12880-024-01422-1
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background To evaluate the clinical performance of two deep learning methods, one utilizing real clinical pairs and the other utilizing simulated datasets, in enhancing image quality for two-dimensional (2D) fast whole-body scintigraphy (WBS). Methods A total of 83 patients with suspected bone metastasis were retrospectively enrolled. All patients underwent single-photon emission computed tomography (SPECT) WBS at speeds of 20 cm/min (1x), 40 cm/min (2x), and 60 cm/min (3x). Two deep learning models were developed to generate high-quality images from real and simulated fast scans, designated 2x-real and 3x-real (images from real fast data) and 2x-simu and 3x-simu (images from simulated fast data), respectively. A 5-point Likert scale was used to evaluate the image quality of each acquisition. Accuracy, sensitivity, specificity, and the area under the curve (AUC) were used to evaluate diagnostic efficacy. Learned perceptual image patch similarity (LPIPS) and the Fréchet inception distance (FID) were used to assess image quality. Additionally, the count-level consistency of WBS was compared between the two models. Results Subjective assessments revealed that the 1x images had the highest general image quality (Likert score: 4.40 ± 0.45). The 2x-real, 2x-simu and 3x-real, 3x-simu images demonstrated significantly better quality than the 2x and 3x images (Likert scores: 3.46 ± 0.47, 3.79 ± 0.55 vs. 2.92 ± 0.41, P 0.05), whereas the diagnostic efficacy for the 3x-real and 3x-simu was better than that for the 3x images (accuracy: 65.1%, 66.35% vs. 59.0%; sensitivity: 63.64%, 63.64% vs. 64.71%; specificity: 66.67%, 69.23% vs. 55.1%. All P < 0.05). Objectively, both the real and simulated models achieved significantly enhanced image quality from the accelerated scans in the 2x and 3x groups (FID: 0.15 ± 0.18, 0.18 ± 0.18 vs. 0.47 ± 0.34; 0.19 ± 0.23, 0.20 ± 0.22 vs. 0.98 ± 0.59. LPIPS: 0.17 ± 0.05, 0.16 ± 0.04 vs. 0.19 ± 0.05; 0.18 ± 0.05, 0.19 ± 0.05 vs. 0.23 ± 0.04. All P < 0.05). The count-level consistency with the 1x images was excellent for all four sets of model-generated images (P < 0.0001). Conclusions Ultrafast 2x speed (real and simulated) images achieved comparable diagnostic value to that of standardly acquired images, but the simulation algorithm does not necessarily reflect real data.

Keywords