Frontiers in Genetics (Sep 2018)

Exploring the Genetic Correlation Between Growth and Immunity Based on Summary Statistics of Genome-Wide Association Studies

  • Zhe Zhang,
  • Zhe Zhang,
  • Peipei Ma,
  • Peipei Ma,
  • Qiumeng Li,
  • Qiumeng Li,
  • Qian Xiao,
  • Qian Xiao,
  • Hao Sun,
  • Hao Sun,
  • Babatunde Shittu Olasege,
  • Babatunde Shittu Olasege,
  • Qishan Wang,
  • Qishan Wang,
  • Yuchun Pan,
  • Yuchun Pan

DOI
https://doi.org/10.3389/fgene.2018.00393
Journal volume & issue
Vol. 9

Abstract

Read online

The relationship between growth and immune phenotypes has been presented in the context of physiology and energy allocation theory, but has rarely been explained genetically in humans. As more summary statistics of genome-wide association studies (GWAS) become available, it is increasingly possible to explore the genetic relationship between traits at the level of genome-wide summary statistics. In this study, publicly available summary statistics of growth and immune related traits were used to evaluate the genetic correlation coefficients between immune and growth traits, as well as the cause and effect relationship between them. In addition, pleiotropic variants and KEGG pathways were identified. As a result, we found negative correlations between birthweight and immune cell count phenotypes, a positive correlation between childhood head circumference and eosinophil counts (EO), and positive or negative correlations between childhood body mass index and immune phenotypes. Statistically significant negative effects of immune cell count phenotypes on human height, and a slight but significant negative influence of human height on allergic disease were also observed. A total of 98 genomic regions were identified as containing variants potentially related to both immunity and growth. Some variants, such as rs3184504 located in SH2B3, rs13107325 in SLC39A8, and rs1260326 located in GCKR, which have been identified to be pleiotropic SNPs among other traits, were found to also be related to growth and immune traits in this study. Meanwhile, the most frequent overlapping KEGG pathways between growth and immune phenotypes were autoimmune related pathways. Pleiotropic pathways such as the adipocytokine signaling pathway and JAK-STAT signaling pathway were also identified to be significant. The results of this study indicate the complex genetic relationship between growth and immune phenotypes, and reveal the genetic background of their correlation in the context of pleiotropy.

Keywords