Veterinary Research (Jun 2023)
Exosome-delivered miR-153 from Trichinella spiralis promotes apoptosis of intestinal epithelial cells by downregulating Bcl2
Abstract
Abstract Trichinellosis, a helminthic zoonosis, exhibits a cosmopolitan distribution and is a public health concern. In previous studies, it was reported that the exosomes secreted by Trichinella spiralis larvae (TsExos) largely affected cell biological activities. miRNAs, as exosome-delivered cargoes, affect the biological activities of the host by targeting genes. The present study aimed to elucidate the mechanisms by which miRNAs interact with intestinal epithelial cells. First, a miRNA library of TsExos was constructed; then, based on high-throughput miRNA sequencing results, miR-153 and its predicted target genes, namely, Agap2, Bcl2 and Pten, were selected for follow-up studies. The dual-luciferase reporter assays revealed that miR-153 directly targeted Bcl2 and Pten. Furthermore, real-time qPCR and Western blotting revealed that only Bcl2 was downregulated by TsExo-delivered miR-153 in porcine intestinal epithelial cells (IPEC-J2). Bcl2, an important antiapoptotic protein, plays an essential role in cell apoptosis as a common intersecting molecule of various signal transduction pathways. Therefore, we hypothesized that miR-153 derived from TsExos causes cell apoptosis by targeting Bcl2. The results suggested that miR-153 could induce apoptosis, reduce mitochondrial membrane potential, affect cell proliferation, and cause damage and substantial oxidative stress. Furthermore, miR-153 coincubated with IPEC-J2 cells stimulated the accumulation of the proapoptotic proteins Bax and Bad, which belong to the Bcl2 family of proteins, and the apoptosis-implementing proteins Caspase 9 and Caspase 3. Moreover, studies have suggested that miR-153 can promote apoptosis by regulating the MAPK and p53 signalling pathways involved in apoptosis. Thus, exosome-mediated miR-153 delivery secreted by T. spiralis could induce apoptosis and affect the MAPK and p53 signalling pathways by downregulating Bcl2 in IPEC-J2 cells. The study highlights the mechanisms underlying the invasion of T. spiralis larva.
Keywords