Respiratory Research (May 2007)
Alterations in cytoskeletal and immune function-related proteome profiles in whole rat lung following intratracheal instillation of heparin
Abstract
Abstract Background Heparin has been shown to modify fundamental biologic processes ranging from blood coagulation and cell proliferation to fibrogenesis and asthma. The goal of this study was to identify specific or broad biologic responses of the rat lung to intratracheal instillation of heparin by targeted proteomic analysis. Methods Rats were given either aerosolized 500 μg heparin in 250 μl saline or saline alone. Lungs were harvested at 0, 24, or 96 hours post-treatment and isolated proteins analyzed by two-dimensional gel electrophoresis. Proteins which increased and decreased significantly in treated groups above controls were then selected for identification by mass spectrometry. Results Although heparin treatments resulted in a general reduction in cytosolic protein expression, there were significant increases within members of discrete groups of proteins. At 24 hours, proteins which function in cytoskeletal organization and in calcium signaling were up-regulated between 2- and 27-fold above baseline and untreated controls. Increased proteins include annexins V and VI, septin 2, capping G protein, actin-related protein 3, moesin, RhoGDP dissociation inhibitor, and calcyclin. A group of proteins relating to immune response and tumor suppressor function were either up-regulated (tumor suppressor p30/hyaluronic acid binding protein-1, Parkinson disease protein 7, proteosome 28 subunit/interferon-γ inducible protein, and proteosome subunit macropain α-1) or strongly down-regulated (transgelin). At 96 hours, most proteins that had increased at 24 hours remained elevated but to a much lesser degree. Conclusion These cumulative observations demonstrate that whole lung heparin treatment results in significant up-regulation of selected groups of proteins, primarily those related to cytoskeletal reorganization and immune function, which may prove to be relevant biomarkers useful in analysis of lung exposures/treatments as well as in system biology studies.