Applied Sciences (Nov 2024)
Failure Probability Analysis of the Transmission Line Considering Uncertainty Under Combined Ice and Wind Loads
Abstract
The probability of accidents, including conductor breakage and tower collapse, for the transmission tower-line system significantly increases under combined ice and wind loads. The existing research on the failure probability of the tower-line system under combined ice and wind loads is limited to static calculation, ignoring the fluctuating effect of wind. In addition, uncertainty in the material strength and geometric dimensions of the structure due to the production process and other pertinent factors could affect the bearing capacity of the tower. To accurately assess the failure probability of transmission lines under combined ice and wind loads, this paper first established numerical models of the transmission tower-line system considering structural uncertainty based on the Latin Hypercube Sampling method. And then, the limit performance indexes of the uncertain models were determined by Pushover analysis. Subsequently, considering the joint probability distributions of ice thickness–wind speed and wind speed–wind direction, the failure probability of the tower-line system under ice and wind loads was calculated. Finally, the influence of structural uncertainty and fluctuating wind on the failure probability was discussed. The results showed that, compared with structural uncertainty, the fluctuating effect of wind had a more significant influence on the failure probability of the tower-line system under combined ice and wind loads. After considering the fluctuating effect of wind, the smaller ice loads can potentially lead to the failure of the transmission tower-line system.
Keywords