Nanomaterials (Nov 2024)

Innovative Carbonaceous Materials and Metal/Metal Oxide Nanoparticles for Electrochemical Biosensor Applications

  • Keshavananda Prabhu Channabasavana Hundi Puttaningaiah

DOI
https://doi.org/10.3390/nano14231890
Journal volume & issue
Vol. 14, no. 23
p. 1890

Abstract

Read online

Electrochemical biosensors have emerged as predominant devices for sensitive, rapid, and specific sensing of biomolecules, with significant applications in clinical diagnostics, environmental observation, and food processing. The improvement of inventive materials, especially carbon-based materials, and metal/metal oxide nanoparticles (M/MONPs), has changed the impact of biosensing, improving the performance and flexibility of electrochemical biosensors. Carbon-based materials, such as graphene, carbon nanotubes, and carbon nanofibers, have excellent electrical conductivity, a high surface area, large pore size, and good biocompatibility, making them ideal electrocatalysts for biosensor applications. Furthermore, M and MONPs have highly effective synergistic, electronic, and optical properties that influence signal transduction, selectivity, and sensitivity. This study completely explored continuous progressions and upgrades in carbonaceous materials (CBN materials) and M/MONPs for electrochemical biosensor applications. It analyzed the synergistic effects of hybrid nanocomposites that combine carbon materials with metal nanoparticles (MNPs) and their part in upgrading sensor performance. The paper likewise incorporated the surface alteration procedures and integration of these materials into biosensor models. The study examined difficulties, requirements, and possibilities for executing these innovative materials in practical contexts. This overview aimed to provide specialists with insights into the most recent patterns in the materials study of electrochemical biosensors and advance further progressions in this dynamic sector.

Keywords