Advances in Civil Engineering (Jan 2021)

A Study on the Mechanism of Dynamic Pressure during the Combinatorial Key Strata Rock Column Instability in Shallow Multi-coal Seams

  • Jie Zhang,
  • Bin Wang,
  • Wenyong Bai,
  • Sen Yang

DOI
https://doi.org/10.1155/2021/6664487
Journal volume & issue
Vol. 2021

Abstract

Read online

In order to study the pressure changes and support failure in mining face under concentrated coal pillar in shallow coal seam, the concentrated coal pillar in 30105 working face of Nan Liang Coal Mine was selected as the research object. In this study, the mechanism of dynamic mine pressure in mining face under concentrated coal pillar was investigated through multiple simulation experiments, numerical simulations, and theoretical analysis. The results of similar simulation experiment indicate that the dynamic mine pressure occurred at 25 m under the concentrated coal pillar and 7 m beyond the coal pillar. The strata roof was observed with sliding down, resulting in collapse and severe fractures commonly seen in rock column. The overlying strata caused the overall subsidence and collapse synchronously, resulting in the sudden increase of the resistance of the support in the working face, and the dynamic load coefficients reach 3.4 and 3.5. The theoretical analysis indicates that the two hard strata in the overlying strata of 3−1 coal meet the theoretical criterion of the combined key strata with the concentrated coal pillar of 2−2 coal in the weak interlayer of the combined key strata. The combined key strata bear the load of the whole overlying strata. The sliding instability featured with the rock column-type fracture located in the combined key strata is considered as the primary trigger of the abnormal resistance of the support and the dynamic mine pressure in the mining face under the concentrated coal pillar. The dynamic pressure model of “combination key strata—immediate roof-support” was established, along with the dynamic load coefficient calculation related to the rock column-type fracture and instability. The characteristics of dynamic load coefficient of the rock column-type fracture and instability under different overlying rock structure conditions were analyzed, providing references and insights into mining under similar geographic conditions.