Atmosphere (Feb 2022)

Influences of MJO on the Diurnal Variation and Associated Offshore Propagation of Rainfall near Western Coast of Sumatra

  • Bojun Zhu,
  • Yu Du,
  • Zhiqiu Gao

DOI
https://doi.org/10.3390/atmos13020330
Journal volume & issue
Vol. 13, no. 2
p. 330

Abstract

Read online

Madden-Julian Oscillation (MJO) plays an important role in modulating precipitation at Maritime Continent (MC) not only on a larger scale, but also in the diurnal cycle. Diurnal rainfall offshore propagation is one of the most evident features near coasts. This study investigates the impacts of MJO on diurnal rainfall and its offshore propagation at the western coast of Sumatra during boreal winters using ERA5 reanalysis. The real-time multivariate MJO (RMM) index was applied to locate the active MJO convection through eight different phases, in the western hemisphere and Africa in P8–P1, at the Indian Ocean in P2–P3, at MC in P4–P5, and the western Pacific Ocean in P6–P7. The rainfall characteristics, including the daily rate, the absolute and normalized diurnal variation amplitudes, and the strengths of diurnal offshore propagation, not only depend on active/inactive MJO stages but also vary under different MJO phases, through the combined modulations of large-scale backgrounds and local-scale land–sea circulations. The offshore rainfall propagation is associated with meso-large-scale gravity waves generated from land–sea thermal contrast and thus is affected by the radiation effect of cloud under different MJO phases. The stronger wave signals in P8–P1 and P6–P7 enhance the diurnal rainfall variation amplitudes away from the coast, while the strong coupling of moist convection with gravity waves contributes greatly to the diurnal rainfall cycle in P2–P3.

Keywords