Ecomatemático (Jan 2017)
Las ecuaciones diferenciales lineales de segundo orden como modelos matemáticos
Abstract
The resolution of problems and mathematics modeling are critic areas in learning and teaching of mathematics. Is there where it must to put on game concepts, skills and procedures originating from the mathematic experience in previous courses. Most of the students have difficulties to understand the mathematic language, related with the inadequate knowledge of specialized language that includes technique words, non-technique words and symbolic notations, specifically in the formulation of mathematic models. The purpose of this research was focused to analyze the results about the semantic knowledge that a group of students of Engineering Faculty of Francisco of Paula Santander University evidence in the representation of lineal differential equations of second order as mathematic models. The theory fundaments that gave support the research was: The theory of two phases by (Mayer, 1986), the modeling cycle under the cognitive perspective of (Ferry, 2006) and the extern representations of (Goldin & Kaput, 1996). The project was quantitative of exploratory and descriptive type. The research was based in the theory of two phases purposed by Mayer R for the resolution of mathematic problems, the modeling cycle according Ferry and the Representations theory of Goldin and Kaput. To recollect the information it was designed and applied a questionary of 17 reacti-ve with opened and closed answers. The discoveries showed that each participant does its own intern an extern representation to concepts as: spring-mass system, weight, mass, balance point, Hooke’s Law, buffering strong, extern strong, Newtown’s Law immersed in a situation through a problem of word. It is necessary to execute deep jobs about the knowledge with the purpose of to look for explanations and aid in teaching and learning through the resolution of mathematic problems.
Keywords