Neural Regeneration Research (Jan 2015)
Is effect of transcranial direct current stimulation on visuomotor coordination dependent on task difficulty?
- Yong Hyun Kwon,
- Kyung Woo Kang,
- Sung Min Son,
- Na Kyung Lee
Affiliations
- Yong Hyun Kwon
- Kyung Woo Kang
- Sung Min Son
- Na Kyung Lee
- DOI
- https://doi.org/10.4103/1673-5374.153697
- Journal volume & issue
-
Vol. 10,
no. 3
pp. 463 – 466
Abstract
Transcranial direct current stimulation (tDCS), an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for upper limbs. The purpose of this study was to investigate the effects of tDCS of the primary motor cortex on visuomotor coordination based on three levels of task difficulty in healthy subjects. Thirty-eight healthy participants underwent real tDCS or sham tDCS. Using a single-blind, sham-controlled crossover design, tDCS was applied to the primary motor cortex. For real tDCS conditions, tDCS intensity was 1 mA while stimulation was applied for 15 minutes. For the sham tDCS, electrodes were placed in the same position, but the stimulator was turned off after 5 seconds. Visuomotor tracking task, consisting of three levels (levels 1, 2, 3) of difficulty with higher level indicating greater difficulty, was performed before and after tDCS application. At level 2, real tDCS of the primary motor cortex improved the accurate index compared to the sham tDCS. However, at levels 1 and 3, the accurate index was not significantly increased after real tDCS compared to the sham tDCS. These findings suggest that tasks of moderate difficulty may improve visuomotor coordination in healthy subjects when tDCS is applied compared with easier or more difficult tasks.
Keywords
- tamoxifen
- Src kinase
- PP2
- trauma
- regeneration
- neuroprotection
- auranofin
- dextromethorphan
- rosiglitazone
- Alzheimer′s disease
- neuroinflammation
- neurodegeneration
- microglia
- astrocytes
- nerve regeneration
- spinal cord
- electroacupuncture therapy
- neural stem cells
- notch signaling pathway
- astrocytes
- inflammation
- survival curve
- proliferation
- differentiation
- real-time quantitative PCR
- western blot assay
- neural regeneration
- nerve regeneration
- superparamagnetic iron oxide
- magnetic guidance
- bone marrow mesenchymal stem cells
- spinal cord injury
- cell transplantation
- magnetic resonance image
- lumbar puncture
- neural regeneration
- nerve regeneration
- spinal cord injury
- spinal cord transection
- average combined score
- magnetic resonance imaging
- diffusion tensor imaging
- fractional anisotropy
- apparent diffusion coefficient
- fiber tractography
- neural regeneration
- nerve regeneration
- peripheral nerve injury
- sciatic nerve
- hypothermia
- blood-nerve barrier
- Evans blue tracer
- neural degeneration
- nerve regeneration
- polyethyleneimine-polyethylene glycol
- spiral ganglion cells
- X-linked inhibitor of apoptosis protein
- gene therapy
- nanocarrier
- cisplatin
- neural regeneration
- ototoxicity
- cochlea
- nerve regeneration
- ocular hypertension
- JNK3
- retinal ganglion cell
- glaucoma
- laser photocoagulation
- intraocular pressure
- neural regeneration
- nerve regeneration
- brain injury
- neuroprotection
- inflammation
- apoptosis
- cerebral ischemia
- SMAD3
- transforming growth factor β1
- NSFC grant
- neural regeneration
- neural regeneration
- cerebral ischemia
- Chinese herbal formula
- Tneurotrophic factor
- ongluo Jiunao injection
- nerve growth factor receptor
- Xuesai Tong
- neuroprotection
- NSFC grant
- neuroprotection
- neural regeneration
- nerve regeneration
- hippocampus
- dentate gyrus
- lipid peroxidation
- type 1 diabetes
- malondialdehyde
- neurons
- neural regeneration
- nerve regeneration
- acupuncture
- cerebral hemorrhage
- immunohistochemistry
- western blot assay
- Notch1
- Hes1
- rats
- DAPT
- neural stem cells
- NSFC grant
- neural regeneration
- neural regeneration
- transcranial direct current stimulation
- visuomotor coordination
- task difficulty
- primary motor area
- motor learning
- neural regeneration