Microbial Cell Factories (Nov 2023)

F. prausnitzii-derived extracellular vesicles attenuate experimental colitis by regulating intestinal homeostasis in mice

  • Lin Ye,
  • Yizhong Wang,
  • Fangfei Xiao,
  • Xufei Wang,
  • Xiaolu Li,
  • Rong Cao,
  • Jiayue Zhang,
  • Ting Zhang

DOI
https://doi.org/10.1186/s12934-023-02243-7
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Emerging evidence has shown that extracellular vesicles (EVs) derived from gut bacteria play a crucial role in microbiota-host interactions. Here, we aimed to evaluate the attenuating effect of EVs derived from a reduced commensal bacterium, F. prausnitzii (Fp-EVs), in inflammatory bowel disease (IBD) on dextran sulfate sodium (DSS)-induced colitis in mice. Results Fp-EVs isolated by ultracentrifugation and typically exhibited a double concave disc shape with an average diameter of 172 nm. Fp-EVs treatment reduced DSS-induced weight loss, disease activity index (DAI) score, colon length shortening, histological damage, neutrophil infiltration and increased intestinal epithelial apoptotic cells in DSS-induced colitis mice. Fp-EVs upregulated the protein expression of zona occludens (ZO)-1 and Occludin and increased the ratio of Tregs in the colon tissue of colitis mice. Furthermore, Fp-EVs downregulated the expression of the proinflammatory cytokines interleukin-1β (IL-1β), IL-2, IL-6, IL-12a, IL-17a, Interferon-γ (IFN-γ), tumor necrosis factor - α (TNF-α), granulocyte-macrophage colony stimulating factor (GM-CSF) and upregulated the anti-inflammatory cytokines IL-4, IL-10, and transforming growth factor β (TGF-β) in DSS-treated mice. Moreover, Fp-EV treatment markedly reduced the phosphorylation of these proteins Nuclear factor-κB (NF-κB) and Mitogen activated protein kinase (MAPK), and regulated the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1). Conclusion Our findings revealed that Fp-EVs attenuated DSS-induced colitis by modulating the intestinal mucosal barrier function and immunological profile. Our findings reveal that Fp-EVs attenuate DSS-induced colitis by modulating intestinal mucosal barrier function and the immunological profile.

Keywords