Fibers (Jun 2022)
Influence of the Strengthening Configuration on the Shear Capacity of Reinforced Concrete Beams Strengthened with SRG (Steel-Reinforced Grout) Composites
Abstract
In this paper, the influence of the strengthening configuration on the structural response of U-wrapped SRG (Steel-Reinforced Grout) shear-strengthened reinforced concrete beams was analyzed both experimentally and theoretically. The parameters varied were the ratio sf/wf, sf being the distance between two consecutive U-shaped strips and wf the width of the strips, and the number of steel fabric layers (one and two). Two series of real-scale beams, eleven beams in total with one un-strengthened and ten strengthened, were tested up to failure (the results obtained in the first series of tests were reported in a previously published paper). The obtained results highlighted that the debonding phenomena, which occurred for all the examined strengthening configurations, strongly affected the shear capacity of strengthened beams. An analytical model found based on the “effective strain” of the SRG strips was developed to predict the shear capacity of SRG shear-strengthened reinforced concrete beams. Two analytical relationships were proposed to evaluate the “effective strain” of the SRG strips: The first one was based on a statistical analysis of results obtained by tests on FRCM (Fabric-Reinforced Cementitious Mortar) and SRG shear-strengthened reinforced concrete beams, while the second was developed through the results of single lap direct shear tests performed on SRG-to-concrete joints. The effectiveness of the proposed analytical methods was evaluated through the comparison of their predictions and available experimental results.
Keywords