Molecules (May 2020)

Trinuclear Ni<sup>II</sup>-Ln<sup>III</sup>-Ni<sup>II</sup> Complexes with Schiff Base Ligands: Synthesis, Structure, and Magnetic Properties

  • Anastasia N. Georgopoulou,
  • Michael Pissas,
  • Vassilis Psycharis,
  • Yiannis Sanakis,
  • Catherine P. Raptopoulou

DOI
https://doi.org/10.3390/molecules25102280
Journal volume & issue
Vol. 25, no. 10
p. 2280

Abstract

Read online

The reaction of the Schiff base ligand o-OH-C6H4-CH=N-C(CH2OH)3, H4L, with Ni(O2CMe)2·4H2O and lanthanide nitrate salts in a 4:2:1 ratio lead to the formation of the trinuclear complexes [Ni2Ln(H3L)4(O2CMe)2](NO3) (Ln = Sm (1), Eu (2), Gd (3), Tb (4)). The complex cations contain the strictly linear NiII-LnIII-NiII moiety. The central LnIII ion is bridged to each of the terminal NiII ions through two deprotonated phenolato groups from two different ligands. Each terminal NiII ion is bound to two ligands in distorted octahedral N2O4 environment. The central lanthanide ion is coordinated to four phenolato oxygen atoms from the four ligands, and four carboxylato oxygen atoms from two acetates which are bound in the bidentate chelate mode. The lattice structure of complex 4 consists of two interpenetrating, supramolecular diamond like lattices formed through hydrogen bonds among neighboring trinuclear clusters. The magnetic properties of 1–4 were studied. For 3 the best fit of the magnetic susceptibility and isothermal M(H) data gave JNiGd = +0.42 cm−1, D = +2.95 cm−1 with gNi = gGd = 1.98. The ferromagnetic nature of the intramolecular Ni···Gd interaction revealed ground state of total spin S = 11/2. The magnetocaloric effect (MCE) parameters for 3 show that the change of the magnetic entropy (−ΔSm) reaches a maximum of 14.2 J kg−1 K−1 at 2 K. A brief literature survey of complexes containing the NiII-LnIII-NiII moiety is discussed in terms of their structural properties.

Keywords