Minerals (Nov 2018)

The Fine Characterization and Potential Photocatalytic Effect of Semiconducting Metal Minerals in Danxia Landforms

  • Yuxiong Xiao,
  • Yanzhang Li,
  • Hongrui Ding,
  • Yan Li,
  • Anhuai Lu

DOI
https://doi.org/10.3390/min8120554
Journal volume & issue
Vol. 8, no. 12
p. 554

Abstract

Read online

The Danxia landform is representative of the Cretaceous continental red sediment. The careful identification and potential environmental effects of minerals in Danxia red beds have yet to be clearly reported. In this work, reddish sandstone samples were collected from Lang Mountain Danxia landform in Xinning, Hunan province, China, and their mineral phases, element distribution, microstructure, and the spatial relationship of different minerals were investigated using polarizing optical microscope, environmental scanning electron microscopy, energy-dispersive X-ray analysis, electron probe microanalysis, micro-Raman spectra, micro- X-ray diffraction, X-ray fluorescence spectroscopy, and high-resolution transmission electron microscopy. The results revealed that iron oxide (mainly hematite) and titanium oxide (mainly anatase) were the dominant minerals in Danxia red layers. Microcrystalline hematite was suggested as being the coloring mineral. Anatase, reported here for the first time in Danxia red beds, constituted the content of titanium in the red layer (0.17⁻0.57%) and was present in a significantly higher amount than the adjacent limestone formation (0.13%). Over 95% of Fe/Ti oxides served as a cementation agent along the framework of coarse-grain minerals (quartz and feldspar). The hematite and anatase were visible-light-responsive semiconductors, with a band gap of 2.01 eV and 3.05 eV, respectively. Photoelectrochemical experiments were performed on synthetic hematite, anatase, and their coupled material. The inactive hematite displayed an enhanced 23-fold photocurrent at 0.8 V (vs. Ag/AgCl) when coupled with anatase. Furthermore, in a photodegradation experiment using methyl orange dye under simulated sunlight, the coupled material showed decolorizing efficiency 2.4 times that of hematite. The anatase, therefore, prominently improved the photocatalytic activities of hematite. It is proposed that these semiconducting minerals in red beds produce oxygen reactive species and have significant environmental effects, which is of great importance.

Keywords