AIMS Environmental Science (Sep 2024)
Design of a neuro-fuzzy model for agricultural employment in Colombia using fuzzy clustering
Abstract
High levels of poverty in rural areas constitute one of the main challenges for developing countries. Since agricultural employment is the main source of income in these areas, the design of tools that simulate and help public policymakers will be remarkably useful. This work proposes the development of a model for agricultural employment in Colombia, considering input variables such as education, contract, and income, and the output is the amount of agricultural employment. Real data measured in Colombia are used for the design and adjustment of the model. To design the fuzzy system for an agricultural employment model, the methods employed are fuzzy C-means clustering and neuro-fuzzy systems. The systems were tested with different cluster configurations, and a fuzzy system was obtained with an adequate distribution of the fuzzy sets and the respective rules that relate the sets. It was observed that as the clusters increase, the adjustment function decreases. The implementation of neuro-fuzzy systems to model agricultural employment will allow public policymakers to generate guidelines that adjust to their political agendas with a lower degree of uncertainty.
Keywords