Environmental Research Letters (Jan 2023)

Characteristics of population exposure to climate extremes from regional to global 1.5 °C and 2.0 °C warming in CMIP6 models

  • Peihua Qin,
  • Zhenghui Xie,
  • Binghao Jia,
  • Shuai Sun

DOI
https://doi.org/10.1088/1748-9326/ad101c
Journal volume & issue
Vol. 19, no. 1
p. 014018

Abstract

Read online

The intensities and occurrences of heat extremes are projected to increase in a warmer climate, and relevant policies have been established to address different warming levels. However, how climate extremes change at regional warming levels is not well-known because changes in temperature vary over different regions. This study investigated climate extremes and population exposure to these extremes at regional and global 1.5 °C or 2.0 °C warming over 58 reference regions with 16 Coupled Model Intercomparison Project, 6th phase models. The years of reaching local 1.5 °C or 2.0 °C warming occurred earlier than the timing of global warming over certain land areas, with more than 30 years advance in northern high latitude land areas. Heat extremes are projected to increase in all reference regions under regional and global 1.5 °C or 2.0 °C warming. Moving from regional to global 1.5 °C or 2.0 °C warming, heat extremes were found to increase over most land areas, especially over mid- and high-latitude areas. Population exposure to climate extremes increased over more than half the land regions under regional to global 1.5 °C or 2.0 °C warming. Changes in population exposure to absolute heat extremes were mainly generated by changes in population over about 34 land regions, whereas changes in population exposure to percentile-based heat extremes over more than 40 land regions were mostly due to changes in climate extremes. These results provided references to establish relevant strategies at regional scale to address possible risks related to climate extremes.

Keywords