Energies (Nov 2021)
Estimation of Prediction Error in Regression Air Quality Models
Abstract
Combustion of energy fuels or organic waste is associated with the emission of harmful gases and aerosols into the atmosphere, which strongly affects air quality. Air quality monitoring devices are unreliable and measurement gaps appear quite often. Missing data modeling techniques can be used to complete the monitoring data. Concentrations of monitored pollutants can be approximated with regression modeling tools, such as artificial neural networks. In this study, a long-term set of data from the air monitoring station in Zabrze (Silesia, South Poland) was analyzed. Concentration prediction was tested for the main air pollutants, i.e., O3, NO, NO2, SO2, PM10, CO. Multilayer perceptrons were used to model the concentrations. The predicted concentrations were compared to the observed ones to evaluate the approximation accuracy. Prediction errors were calculated separately for the whole concentration range as well as for the specified concentration subranges. Some different measures of error were estimated. It was stated that the use of a single measure of the approximation accuracy may lead to incorrect interpretation. The application of one neural network to the entire concentration range results in different prediction accuracy in various concentration subranges. Replacing one neural network with several networks adjusted to specific concentration subranges should improve the modeling accuracy.
Keywords