Logical Methods in Computer Science (Apr 2019)
Feedback computability on Cantor space
Abstract
We introduce the notion of feedback computable functions from $2^\omega$ to $2^\omega$, extending feedback Turing computation in analogy with the standard notion of computability for functions from $2^\omega$ to $2^\omega$. We then show that the feedback computable functions are precisely the effectively Borel functions. With this as motivation we define the notion of a feedback computable function on a structure, independent of any coding of the structure as a real. We show that this notion is absolute, and as an example characterize those functions that are computable from a Gandy ordinal with some finite subset distinguished.
Keywords