Results in Engineering (Sep 2024)
Resilience to extreme storm conditions: A comparative study of two power systems with varying dependencies on offshore wind
Abstract
In the next decades, the dependencies on power production from renewable energy sources are expected to increase dramatically. A transition towards large-scale offshore wind farms together with an increased electrification of the industry and transportation sectors introduces new vulnerabilities to society. Further, extreme weather events are expected to increase in intensity and frequency, driven by climate change. However, there are significant knowledge gaps concerning the impacts of severe weather conditions on the resilience of power systems with large dependencies on offshore wind. In the present study, a comparison between two different power systems’ resilience to historical extreme storm conditions has been conducted. The power systems are the IEEE39-bus New England model and the Great Britain model. The results show significant differences between the two power systems, which underlying reasons are analysed and explained. With an offshore wind penetration level of 30 %, the New England model stays intact in terms of connected load. When increasing the penetration level to 40 %, about 10 % of the total connected load gets disconnected, whereas about 33 % of the load gets disconnected with a penetration level of 50 %. The Great Britain model stays intact in terms of connected load with a penetration level of at least 49 %.