FME Transactions (Jan 2021)

Numerical simulation of flow in trapezoidal labyrinth-channels of drip irrigation

  • Ouarriche Hamza,
  • El Bouhali Mohamed,
  • Bouisfi Firdaouss,
  • Chaoui Mohamed,
  • Hannaoui Mohamed

Journal volume & issue
Vol. 49, no. 1
pp. 147 – 153

Abstract

Read online

The clogging of emitters has been considered as one of the most troublesome problems inhibiting the extension of drip irrigation. This paper investigates the flow field of water and behaviour of suspended particles in the trapezoidal labyrinth-channel. Computational Fluid Dynamics methods has been executed on liquid-solid two-phase flow in labyrinth-channel emitters. RNG k-e turbulence model was used to evaluate four types of emitters that have the same characteristics and differ in the elbow width S. This study has shown that as the value of S increases, the maximum velocity in the labyrinth-channel decreases and the number of vortices increases. However, emitter with a high S value are more subtle to clogging. In addition, it was also observed that smaller diameter particles behave best when they pass through the channel and follow the streamline flow. As the particle diameters become larger, the particles tend to leave the mean stream and enter the vortex zones under the force of inertia. So, more suspended particles trapped in the vortex area , more the chances of emitter clogging increase. All of these furthermore confirm that vortex and low speed regions were the main causes leading to emitter clogging.

Keywords