Scientific Reports (Apr 2021)
Flatness and boundness of photonic drumhead surface state in a metallic lattice
Abstract
Abstract Nodal chain (NC) semi-metals have the degeneracy of interlacing rings in their band structure in momentum space. With the projection of degenerate rings towards crystal boundaries, there is a special type of surface dispersion appearing at surface Brillouin zone and termed drumhead surface state (DSS). Previously, experimental investigations on photonic NC and DSS have been done on metallic photonic crystals at microwave frequencies. However, far-field detection of DSS and its coupling to radiative modes in free space have not been studied. In the work, we analyze the photonic DSS in a metallic lattice by angle-resolved far-field reflection measurement and numerical simulation at terahertz (THz) frequencies, and reveal its flatness and boundness in band structure, even in the radiation continuum. Particularly, the DSS band can be tuned being from negatively dispersive via flat to positively dispersive by a single surface parameter, and the DSS at Γ point in surface Brillouin zone is in fact a symmetry-protected bound state in the continuum. Our results might have some potential applications towards THz photonics.