Ecotoxicology and Environmental Safety (Nov 2024)
Exposure to perfluorodecanoic acid impairs follicular development via inducing granulosa cell necroptosis
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted significant attention due to their environmental toxicity. However, the detrimental impact of PFAS on the development of the female reproductive system remains controversial. In this study, we investigated the effects of three specific PFAS compounds perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) on ovarian development. Among these compounds, PFDA demonstrated the most pronounced cytotoxic effect on ovarian granulosa cells. The results showed that a 200 μM concentration of PFDA induced cell apoptosis via the intrinsic pathway by elevating reactive oxygen species (ROS) levels and activating Caspase-9 and Caspase-3. Furthermore, 200 μM PFDA triggered necroptosis, a form of regulated cell death (RCD), through the receptor-interacting serine/threonine kinase 1 (RIPK1), receptor interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like protein (MLKL) axis, mediated by inhibition of the canonical apoptosis proteolytic enzyme Caspase-8. In vivo experiments confirmed that mice exposed to PFDA displayed a significantly reduced ovarian index compared to the control group, accompanied by evident follicular atresia. Ovarian tissues from the PFDA-exposed group showed upregulated necroptosis markers, which were effectively mitigated by inhibiting the phosphorylation of RIPK1 at Ser166. Importantly, this study provides the first evidence that PFDA disrupts ovarian development through a novel mechanism involving the RIPK1-mediated necroptosis pathway, alongside the detection of the intrinsic apoptosis pathway. This greatly expands our insight into the effects of PFDA on cell death. This finding highlights the potential public health hazards associated with PFDA exposure and emphasizes the need for further research to fully understand its broader implications.