Frontiers in Earth Science (Mar 2024)

Investigation on shakedown response-behavior of thawed subgrade soils under long-term traffic loading

  • Shujian Wang,
  • Xiangyang Li,
  • Yanzheng Ti,
  • Xiaoning Zhang,
  • Tao Yin,
  • Ruibing Wang,
  • Xiufeng Jiang,
  • Zhikai Su,
  • Jianwen Hao

DOI
https://doi.org/10.3389/feart.2024.1361283
Journal volume & issue
Vol. 12

Abstract

Read online

The shakedown state of the subgrade is crucial for the sustainable design and long-term stability evaluation of pavement structures. In order to characterize the plastic deformation and shakedown behavior of subgrade soil in seasonal frozen regions, cyclic triaxial tests were conducted on the thawed subgrade soil after seven cycles of freeze-thaw. The influences of the numbers of cycle loading, the amplitude of cyclic deviator stress, and the confining stress were considered variables. The evolution features of accumulative plastic strain, accumulative plastic strain rate, and critical dynamic stress were experimentally analyzed. Based on the shakedown theory, the ensuing discoveries were that the accumulative plastic strain response-behavior of thawed subgrade soil was typically divided into plastic shakedown, plastic creep, and incremental collapse under the long-term cyclic loading. Furthermore, the shakedown standard for thawed subgrade soil was also proposed based on the evolution of the accumulative plastic strain rate. The critical dynamic stresses can be obtained by the proposal formula to determine the different plastic deformation ranges.

Keywords