IEEE Access (Jan 2020)
Dynamics of Fractional-Order Neural Networks With Discrete and Distributed Delays
Abstract
This paper is concerned with the stability and Hopf bifurcation of fractional-order neural networks with discrete and distributed delays. The novelty of this paper is to take into account the discrete time delay and the distributed time delay for fractional-order systems. By introducing two virtual neurons to the original network, a new four-neuron network only involving discrete delays is formed. The sum of discrete delays is adopted as the bifurcation parameter to demonstrate the existence of Hopf bifurcation. It is found that the critical value of bifurcation can be effectively manipulated by choosing appropriate system parameters and order. Finally, numerical simulations are executed to substantiate the theoretical results and describe the relationships between the parameters and the onset of bifurcation.
Keywords