International Journal of COPD (Oct 2015)

A new approach to assess COPD by identifying lung function break-points

  • Eriksson G,
  • Jarenbäck L,
  • Peterson S,
  • Ankerst J,
  • Bjermer L,
  • Tufvesson E

Journal volume & issue
Vol. 2015, no. Issue 1
pp. 2193 – 2202

Abstract

Read online

Göran Eriksson,1,* Linnea Jarenbäck,1,* Stefan Peterson,2 Jaro Ankerst,1 Leif Bjermer,1 Ellen Tufvesson11Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, 2Regional Cancer Center South, Skåne University Hospital, Lund, Sweden*These authors contributed equally to this workPurpose: COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions.Patients and methods: Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1), and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points.Results: Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume) and reactance (reactance area and reactance at 5Hz) were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC) and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of -5.3 per unit FEV1, while residual volume had no slope change above and -3.3 change per unit FEV1 below its break-point of 61%.Conclusion: Continuous analyses of different lung function parameters over the spirometric COPD severity range gave valuable information additional to categorical analyses. Parameters related to volume, diffusion capacity, and reactance showed break-points around 65% of FEV1, indicating that air trapping starts to dominate in moderate COPD (FEV1 =50%–80%). This may have an impact on the patient’s management plan and selection of patients and/or outcomes in clinical research.Keywords: spirometry, severity, body plethysmography, single-breath carbon-monoxide diffusion test, impulse oscillometry, break-point