JMIR Formative Research (Feb 2022)

Intensive Longitudinal Data Collection Using Microinteraction Ecological Momentary Assessment: Pilot and Preliminary Results

  • Aditya Ponnada,
  • Shirlene Wang,
  • Daniel Chu,
  • Bridgette Do,
  • Genevieve Dunton,
  • Stephen Intille

DOI
https://doi.org/10.2196/32772
Journal volume & issue
Vol. 6, no. 2
p. e32772

Abstract

Read online

BackgroundEcological momentary assessment (EMA) uses mobile technology to enable in situ self-report data collection on behaviors and states. In a typical EMA study, participants are prompted several times a day to answer sets of multiple-choice questions. Although the repeated nature of EMA reduces recall bias, it may induce participation burden. There is a need to explore complementary approaches to collecting in situ self-report data that are less burdensome yet provide comprehensive information on an individual’s behaviors and states. A new approach, microinteraction EMA (μEMA), restricts EMA items to single, cognitively simple questions answered on a smartwatch with single-tap assessments using a quick, glanceable microinteraction. However, the viability of using μEMA to capture behaviors and states in a large-scale longitudinal study has not yet been demonstrated. ObjectiveThis paper describes the μEMA protocol currently used in the Temporal Influences on Movement & Exercise (TIME) Study conducted with young adults, the interface of the μEMA app used to gather self-report responses on a smartwatch, qualitative feedback from participants after a pilot study of the μEMA app, changes made to the main TIME Study μEMA protocol and app based on the pilot feedback, and preliminary μEMA results from a subset of active participants in the TIME Study. MethodsThe TIME Study involves data collection on behaviors and states from 246 individuals; measurements include passive sensing from a smartwatch and smartphone and intensive smartphone-based hourly EMA, with 4-day EMA bursts every 2 weeks. Every day, participants also answer a nightly EMA survey. On non–EMA burst days, participants answer μEMA questions on the smartwatch, assessing momentary states such as physical activity, sedentary behavior, and affect. At the end of the study, participants describe their experience with EMA and μEMA in a semistructured interview. A pilot study was used to test and refine the μEMA protocol before the main study. ResultsChanges made to the μEMA study protocol based on pilot feedback included adjusting the single-question selection method and smartwatch vibrotactile prompting. We also added sensor-triggered questions for physical activity and sedentary behavior. As of June 2021, a total of 81 participants had completed at least 6 months of data collection in the main study. For 662,397 μEMA questions delivered, the compliance rate was 67.6% (SD 24.4%) and the completion rate was 79% (SD 22.2%). ConclusionsThe TIME Study provides opportunities to explore a novel approach for collecting temporally dense intensive longitudinal self-report data in a sustainable manner. Data suggest that μEMA may be valuable for understanding behaviors and states at the individual level, thus possibly supporting future longitudinal interventions that require within-day, temporally dense self-report data as people go about their lives.