Shanghai Jiaotong Daxue xuebao (Oct 2022)

Peafowl Optimization Algorithm Based Bi-Level Multi-Objective Optimal Allocation of Energy Storage Systems in Distribution Network

  • YANG Bo, WANG Junting, YU Lei, CAO Pulin, SHU Hongchun, YU Tao

DOI
https://doi.org/10.16183/j.cnki.jsjtu.2021.371
Journal volume & issue
Vol. 56, no. 10
pp. 1294 – 1307

Abstract

Read online

Based on the relation between battery energy storage systems (BESSs) planning and operation, a multi-objective optimal allocation model that takes into account both economic and technical requirements is established, and a bi-level optimization structure is constructed to ensure effective planning and high-efficient operation of BESSs. In the inner layer, a peafowl optimization algorithm (POA) is employed to solve the BESSs charge-discharge operation strategy with the purpose of BESSs operation benefit maximization. In the outer layer, a multi-objective peafowl optimization algorithm (MOPOA) is devised to solve the Pareto solution set of BESSs siting and sizing scheme, which aims at minimizing BESSs cost, as well as voltage fluctuation and load fluctuation in distribution network. Furthermore, a typical scenario set is obtained via the clustering algorithm considering uncertain operating conditions. The simulation is performed based on the extended IEEE-33 bus system. The results show that the proposed algorithm achieves a trade-off between local search and global search, thus obtains a high-quality solution. It can obtain a more widely distributed and uniform Pareto front, which not only achieves the best investment benefit, but also improves voltage quality and power stability.

Keywords